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A test of the DV method with an exactly soluble 
transport problem 

W A Schlup 
IBM Zurich Research Laboratory, 8803 Ruschltkon-ZH, Switzerland 

Received I April 1975 

Abstract. A special one-dimensional transport equation will be solved by the variational 
technique of Djukic and Vujanovic Reasonable ansatz with one, two and three variational 
parameters are used. The variational solution is compared with the exact solution and its 
least mean-square approximation for the same ansatz. 

1. Introduction 

The DV method has been introduced by Djukic and Vujanovic (1971) in order to treat 
dissipative mechanical systems. It has been applied to problems of heat transfer (Vujano- 
vic and Djukic 1972), to hydrodynamical problems (Vujanovic et a1 1972) and to the 
Boltzmann equation (Schlup 1975a, b). Its relation to classical variational methods 
has been discussed by Schlup (1974, 197%). 

Here, we want to treat a one-dimensional diffusion problem without a drift termt. 
It can be solved exactly and, therefore, the quality of approximate methods can be 
checked explicitly. 

Certainly, the result will depend strongly on the ansatz chosen. In order to refine 
the approach, three variational parameters A ,  B, C will be introduced; but in ansatz 1, 
B and C are fixed and only A is optimized: in ansatz 2 only C is fixed and A , B  are 
determined by optimization : and only in ansatz 3 are all three, ie A ,  B and C, considered 
as variational parameters. 

If the ansatz is 'exact', ie contains the exact solution for a convenient choice of 
variational quantities, the optimum solution becomes the exact one. If the aiisatz 
is approximate. ie not 'exact' in the above sense. then the result depends on the details 
of the ansatz;  if it  is a reasonable approximation, it will give good variational results. 

In order to compare different approximations, a quality measure will be introduced. 
A least mean-square approximation for a given ansatz to the exact solution will be con- 
sidered as the ideal approximation. It corresponds to the optimum fitting of the varia- 
tional quantities. A quality measure for the optimum solution according to the DV 
method will be the mean-square deviation from the exact result, which always exceeds 
the ideal deviation for the same ansatz. The DV optimum and the ideal deviation are 
zero for an exact ansatz only. 

t In one dimension a drift term can always be eliminated by a variable transformation: it is also equivalent to 
a Fokker-Planck equation in time and momentum. 
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2. The problem 

We consider the following one-dimensional diffusion problemt in x E ( -  cc, cc) for 
the particle density n(x ,  t )  

an d2n - 
at a x 2  

with the initial condition 

x < o  
n ( x , O )  = 

With the symmetry 

n ( - x , t )  = 1-n(x,t) 

it transforms into a half-space diffusion problem with equation (2.1) in x E (0, E), 
initial condition 

n(x,O) = 0 (2.4) 
and boundary condition 

n(0, t )  = 1. 

The exact solution (Abramowitz and Stegun 1965) is 

n(x ,  t )  = 1 - erf(x/2t l I 2 )  

where erf is the error function. 

3. Theansatz 

We describe the decaying solution by an explicit x-dependent ansatz of polynomial 
type, containing at most three variational quantities q(t), A,  p : 

r- ansatz 1 : n("(x, t )  = 

(3.2) 

(3.3) 

The results for x < 0 are obtained by the symmetry (2.3). The ansatz 1 and 2 can be 
considered as special cases of 3, namely 

t Diffusion constant D = 1 ; all particles in left half-space with twice the stationary density ns = 1 .  
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This ansatz will be used for an optimum solution of (2.1), (2.4) and (2.5), according to the 
DV variational method. The boundary condition (2.5) is identically fulfilled, whereas 
the initial condition implies 

q(0) = 0. (3.6) 

4. The DV variational solution 

The action integral to be extremized is 

S = Jox dx JOm dt 9 ( t ,  x, n, ri, n') 

where the DV Lagrangian is 
n2 n12 

9 = $ ( r , i ) - - - - .  
2 2  

$(t ,  j.) is a DV auxiliary function with the properties 

lim $(t, A) = 0 
1-0 

lim $ ( t , n )  = 1. 
1-0 

The Euler-Lagrange (EL) equation is 

6 S  
6n r [ n ]  = - = -(t+b(t, A)ri)+n" = 0 

which for 1 -+ 0 and (4.3) and (4.4) yields 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Partially integrated terms in 6S vanish because of (2.4) and (2.5)t. 

ansatzt in all variables entering the $ functions has to be made, ie 
According to the rules for application established by Schlup (19754 a complete 

P = P( t ) ,  A = A(t).  (4.7) 

Ansatz 1 to 3 are such that the x integration in the action integral can be performed. 
Using ansatz 3 with extension (4.7), S becomes 

and 

'f There are no contributions from the upper boundaries x = ic or t = E, since ti and n' vanish there. 
$ To avoid the problem of interchange of integration over an infinite range with limit I + 0. 
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and A,  the EL equations are 

(4. loa) 

(4.10h) 

(4 .10~)  6S . SLO lim - = 0 * 12,q = -. 
1-0 6 A  i3A 

Assuming p and A constant is compatible with equations (4.10), since the ratios 

1 1 2  - aLo/&J (4.1 la )  

1 2 ,  - G d A  

1 2 2  ?Lo/% 

1 2 ,  SLOIaq 
(4.1 1 h)  

are independent of q and are sufficient to determine p and A .  Finally, (4.10b) gives 

44 = 7 q a u a q  (4.12) 
2 2  

where the right-hand side depends only on p and A .  Therefore, the optimum solution is 

(4.13) 

where p and A follow from (4.1 1) (for explicit formulae see the appendix). 
The corresponding results for the ansatz (3.1), (3.2) and (3.3) are 

1 p = 1, A = 2 3  Q = 10 

&! = 0*000822 

3 * p = 1.069, A = 2.858, Q = 15.542 

yg,) = 0~000156 

where y(” is the least mean-square deviation for t = 1 (see 0 5). 

5. The least mean-square approximation 

In order to check the variational results of the DV method, we could compare it with the 
exact solution (2.6). The quality of the approximation naturally depends on the details 
of the ansatz. In order to define the best choice of parameters in a given ansatz, we use 
a least mean-square approximation (LMS) to the exact solution ; it can be considered as 
the ideal approximation with respect to the constraints of a given ansatz. This ideal 
approach should not be confused with the LMS approximation to the equation (Vujanovic 
and Djukic 1972, Schlup 1975~).  
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The ansat2 1 to 3 contain three variational parameters, if q ( t )  = (Qt)’/’ (see (4.13)) is 
used, namely p ,  A and Q. The quantity to be minimized in the LMS method is 

where nz = 1, 2, 3 and n e x ( x ,  t )  is the exact solution (2.6). This is a reasonable criterion 
because of: (i) boundary condition (2.4); and (ii) asymptotic behaviour, which makes the 
integrand 0 in .Y = 0 and integrable for x -+ x t .  Since t enters only through x ’ t ’ / 2 .  the 
integral R‘”’ = t’ 2;,(mJ, where T(~) depends on the m parameters of the ansatz (m). 
regarding q( t )  = (Or)‘ ’. 

Minimization of R“, gave the following numerical results for the ansatz 1 to 3 :  

1 ~ = l . A = 2  
(5.2) 

(5 .3)  
* A = 2.486, Q = 15.084, ;‘$IN = 0.000138 

3 * p = 1.129, A = 4.280, Q = 25.898 

Y G ~ N  = 0~000016. 
(5.4) 

6.  Conclusion 

The approximate solution of equation (2.1) according to the DV variational method 
and the LMS method with respect to the ansatz 1 to 3, has been calculated. The deviation 
from the exact solution A n  = n(x ,  t ) - n e x ( x ,  t )  is shown in figure 1. The DV result given 
by the dotted curves-except for ansatz 3 and small x/t’”-is smaller everywhere than 
the exact solution, into which it merges for x/tl” > Q’’2 (full curve). The LMS result 

-0 O S O L  I,,, 
Figure 1. The deviation An = n(x ,  t)-n,,(x, t) against x! t ’ !2  for the different ansat- 1, 2, 3 
by the variational method of Djukic and Vujanovic (dotted curves) and the least mean- 
square method (broken curves). 

t Otherwise, instead of the ordinate distance a normal distance should be used and also some weight factor 
p ( x )  would be necessary. 
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given by the broken curves cuts the exact solution several times (zeros). If one compares 
curves corresponding to the same ansatz (m), the maximal deviation is practically of the 
same order (ratio DV/LMS 2 2). Therefore, the DV method yields results which are, for 
reasonable ansatz, nearly as reliable as the ideal approximation. 

The relative error for x/t’I2 < 1 is of the order of a few per cent; it increases to 100% 
(for x/t1’2 Q) for increasing ~ / t ” ~ ,  because of the special asymptotic form of the 
ansatz 1 to 3. In this range, the relative error is not a good measure as to the quality 
of the approximation. The LMS deviation (for t = 1) y ( m )  is much smaller for the ideal 
approximation (ratio j(t)!/jl(Mm{,,, 1 3 to 10) than the linear deviation, especially for a 
more-parameter ansatz. This is a consequence of the essentially unilateral deviation 
of the DV result, which gives a much larger contribution to ?j(”’). 

Finally, it should be noted that the diffusion problem has the same variational 
solution, if the limit (1 + 0) Lagrangian 

9 = e‘/A(+Jfi2-Ln’2) 2 (6.1) 

is used as the starting point (see variational equivalence: Schlup 1975~).  

Appendix 

- 0 * (4.13) 
6 S  
6q 
-- - 

r ( 2  - l/p)T(2A+ 1 + l/p) 
Q(p’  A )  = r ( 2 +  l/p)T(2A+ 1 - l/p) 

p = 1 : Q(l, A)  = A(2A+ 1). 

= 0 * (4.11b) 
6s 6s 
6q 6A 

- - - -  

2A(p+ 1)($(2A+ 1 - 1/~)-$(2A- 1)- 1/A) 

+ ( 2 A  - 1 )($(.U + 1 + l /p) - $(2A)) = 0 

(A1.2)*4A2-8A+1 = 0. p = 1, 

(Al . l )  

(A1.2) 

6s 6s 
- = - = O a ( 4 . l  In) 
6q 6 P  

For transcendental functions see Abramowitz and Stegun (1965). 

References 

Abramowitz M and Stegun I A 1965 Handbook of Marhematical Functions (New York: Dover) 
Djukic D and Vujanovic B 1971 2. Angew. Math. Mech. 51 611 
Schlup W A 1974 Helv.  Phys. Acta 41 490 

~ 1975a Verh. Di. Phys. Ges. 5 345 
~ 1975b J .  Math. Phys. to be published 
__ 1975c to be published 
Vujanovic B and Djukic D 1972 Inr. J .  Heat Mass  Transfer 15 1 1  1 1 
Vujanovic B. Strauss A M and Djukic D 1972 Ing.-Arch. 41 381 


